創薬研究からPCクラスターに 期待するもの ~計算創薬の縄張を広げるために~

北村 一泰 日本薬科大学

> PCクラスターシンポジウム 12/11/2014 秋葉原 1

医薬品の研究開発フロー(JPN)

	創薬	研究		前	期開発	後期	朝開発	申請承認
~1 _年	1~2 ~1億	年 1~3 円 1~3個	年 1~2 意P 1~2億	年 約1年 1977 6~10	。)億「約1年	約2.5年	~ 約2年	~
標的分子の特定	HTS リード化合物発見	リード化合物最適化	開発化合物の絞込み	前臨床GLP試験	第1相臨床試験	第2相臨床試験	第3相臨床試験	*新薬一品当たりの 国内R&D費は300億 円位か?
・標的分子の有用性検証・評価系構築	・基本骨格の創出	・最適化(薬効、体内動態、安全性)	・動物での薬効確認・動物での体内動態確認	・動物での安全性試験(GLP)	・健康人での安全性確認・健康人での体内動態の確認	・患者での安全性確認・患者での最適使用量の決定	・患者での効果検証	

創薬研究プラットホーム

リード最適化のプロセス

一般に報告されているHTSのヒット率

化合物濃度	ヒット率
10mM~1mM	0.06%
1mM~100µM	0.03%
100μM~1μM	0.02%
1µM∼1nM	0.01%
1nM以下	0.001%

HTSの一日あたりのスピード(一般的に)

- JPN: $1.5 \times 10^4 \sim 3.0 \times 10^4$ compds
- US: 1.0×10^5 compds

H.Park et al., Bioorg.Med.Chem.Lett. 2008, 18, 2250-2255.

in silico Screeningの例

標的分子	疾患	ソフトウェア	検索 対象数	検索 ヒット数	活性 化合物数	活性の強さ	論文
PRL-3	癌	AutoDock	85000	191	12	10 ~ 50µM	(1)
EF	感染症	AutoDock	10000	19	4	μM	(2)
KDR *標的3D構造なし	癌(血管新生)	Catalyst	10458	20	1	30µM	(3)
17β-HSD1	乳癌	Catalyst	340042	14	4	6 ~ 50 µ M	(4)
Cathepsin S	自己免疫疾患	Catalyst	2664754	15	7	15µM	(5)
AdoMetDC (S-adenosylmethionine decarboxylrase)	癌	GLIDE	1990	133	1	μM	(6)
CCR5	HIVウィルス	GOLD, Surflex	1620316	59	10	10µM	(7)
MCH-R1	肥満	ICM	187084	129	6	7-20µM	(8)

References

(1) Bioorg.Med.Chem.Lett. 2008, 18, 2250-2255.

(2) Bioorg.Med.Chem. 2008, 16, 7225-7233.

(3) Bioorg.Med.Chem.Lett. 2007, 17, 2126–2133.

(4) J.Med.Chem. 2008, 51, 4188-4199.

(5) J.Chem.Inf.Model. 2007, 47, 1897-1905.

(6) J.Med.Chem. 2007, 50, 1294-1303.

(7) J.Chem.Inf.Model. 2008, 48, 1693-1705.

(8) J.Med.Chem. 2008, 51, 581-588.

ヒット率:1~50%,活性値:弱い

Lock & Key Concept

Lock (Protein)

Chemical Modification & Docking Simulation

<u>in silico HTS & Optimization (概念図)</u>

HTS: High Throughput Screening

RNaseT₁& 2'-GMPの会合過程

1本鎖RNAのG塩基の3'位

RNaseT₁(104Res+Na⁺):-4価 2'-GMP:-2価

4ns: 10days (MD-Engine: 200GFlops)

Allosteric Ligand PNU-120596の 結合シミュレーション

α7のX線結晶構造

Hansen S. B., et al, EMBO J. Oct 19, 2005; 24(20): 3635–3646.

- ソフトウェア:amber12(ff10+TIP3P)
- 計算機:GPUクラスター(NVIDIA tesla K20X)
- 約12万原子

<u>in silico HTS & Optimization (概念図)</u>

HTS: High Throughput Screening

∆G Calculation Scheme

P: protein, L: ligand, PL: complex moleculeaq: aqueous phase, gas: gas phase

GSK-3βの構造と阻害剤の相互作用

GSK-3_β: Glycogen Synthase Kinase-3_β

Ligand binding pocket

Berman H. M et al, Nucleic Acids Res., 2000, 28, 235-242

Bhat, R., et al, J, Biol. Chem. 2003 278, 278, 45937-45945

Chemical Structures of 7-Azaindole Derivatives

Kitamura, K., et al., J. Chem. Inf. Model. 2014, 54, 1653-1660

#	Chemical	IC ₅₀	#	Chemical	IC ₅₀	#	Chemical	IC50
	Structure	(nM)		Structure	(n M)		Structure	(nM)
1		5	6		1206	11		445
2	for the second sec	17	7		43	12		693
3		96	8		326	13		5745
4	HO~~~H	63	9		1387	14		1054
5	HO C C C C C C C C C C C C C C C C C C C	500	10		192	15		42

IC₅₀ : 50% inhibitory concentration

A Scatter Diagram of Calculated and Observed *AGs* values

∆Gs of 7-Azaindole Derivatives (kcal/mol)

#	∆G _{obs}	ΔG _{calc}	∆G _{complex}	∆G _{sol}
1	-11.4	-17.8±0.4	-38.8±0.4	-21.1±0.1
2	-10.6	-17.4±0.9	-40.5±0.8	-23.1±0.5
3	-9.6	-15.6±0.7	-33.7±0.7	-18.1±0.1
4	-9.8	-14.4±0.7	-36.8±0.7	-22.4±0.3
5	-8.6	-13.9±0.8	-37.1±0.8	-23.1±0.1
6	-8.1	-13.1±0.9	-30.7±0.9	-17.6±0.1
7	-10.1	-15.1±0.6	-35.2±0.6	-20.2±0.1
8	-8.8	-15.0±0.6	-34.8±0.6	-19.8±0.1
9	-8.0	-13.2±1.4	-37.8±1.4	-24.7±0.1
10	-9.2	-13.6±0.4	-33.9±0.3	-20.4±0.1
11	-8.7	-13.7±0.4	-33.4±0.3	-19.7±0.1
12	-8.4	-15.0±0.4	-36.1±0.4	-21.1±0.1
13	-7.1	-10.7±0.4	-28.6±0.3	-17.9±0.1
14	-8.2	-12.2±0.5	-32.8±0.5	-20.6±0.1
15	-10.1	-15.2±0.6	-37.4±0.6	-22.3±0.1

Kitamura et al., J. Chem. Inf. Model., 54, 1653-1660, 2014

in silico HTS & Optimization (概念図)

():一日で計算したい分子数

- 1) 結合部位探索
 10⁴ compds/day

 (分子会合)
 350TFlops/台
- 1) リードの最適化 (結 合自由エネルギー)

40 compds/day 10Tflops/台

2) Docking (Free Energy Surface)

1 compd/day 1 Pflops/台(??)

3) 代謝酵素反応

1 compd/day 10²PFlops/台(???)

計算創薬専用計算機(概念)

創薬研究プラットホーム

